Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In unconfined environments, bacterial motility patterns are an explicit expression of the internal states of the cell. Bacteria operating a run-and-tumble behavioral program swim forward when in a ‘run’ state, and are stalled in place when in a reorienting ‘tumble’ state. However, in natural environments, motility dynamics often represent a convolution of bacterial behavior and environmental constraints. Recent investigations showed thatEscherichia coliswimming through highly confined porous media exhibit extended periods of ‘trapping’ punctuated by forward ‘hops’, a seemingly drastic restructuring of run-and-tumble behavior. We introduce a microfluidic device to systematically explore bacterial movement in a range of spatially structured environments, bridging the extremes of unconfined and highly confined conditions. We observe that trajectories reflecting unconstrained expression of run-and-tumble behavior and those reflecting ‘hop-and-trap’ dynamics coexist in all structured environments considered, with ensemble dynamics transitioning smoothly between these two extremes. We present a unifying ‘swim-and-stall’ framework to characterize this continuum of observed motility patterns and demonstrate that bacteria employing a consistent set of behavioral rules can present motility patterns that smoothly transition between the two extremes. Our results indicate that the control program underlying run-and-tumble motility is robust to changes in the environment, allowing flagellated bacteria to navigate and adapt to a diverse range of complex, dynamic habitats using the same set of behavioral rules.more » « less
-
Sourjik, Victor (Ed.)Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacteriumPseudomonas aeruginosaand discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm’s depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.more » « less
An official website of the United States government
